Reacceleration of charged dark matter
Peer reviewed, Journal article
Accepted version

View/ Open
Date
2020Metadata
Show full item recordCollections
- Institutt for fysikk [2836]
- Publikasjoner fra CRIStin - NTNU [41088]
Original version
Journal of Cosmology and Astroparticle Physics. 2020, 2020 (10), . 10.1088/1475-7516/2020/10/001Abstract
Charged particles scattering on moving inhomogenities of the magnetised interstellar medium can gain energy through the process of second-order Fermi acceleration. This energy gain depletes in turn the magnetic wave spectrum around the resonance wave-vector k~ 1/RL, where RL is the Larmor radius of the charged particle. This energy transfer can prohibit the cascading of magnetic turbulence to smaller scales, leading to a drop in the diffusion coefficient and allowing the efficient exchange of charged dark matter particles in the disk and the halo. As a result, terrestial limits from direct detection experiments apply to charged dark matter. Together with the no-observation of a drop in the diffusion coefficient, this excludes charged dark matter for 103 GeVlesssim m/q lesssim 1011 GeV, even if the charged dark matter abundance is only a small part of the total relic abundance.