Show simple item record

dc.contributor.authorFaltinsen, Odd Magnus
dc.contributor.authorLagodzinskyi, Oleksandr E.
dc.contributor.authorTimokha, Alexander
dc.identifier.citationJournal of Fluid Mechanics. 2020, 894 (A10), .en_US
dc.description.abstractAssuming an inviscid incompressible liquid (with irrotational flows) partly filling a square base tank, which performs a small-amplitude sway/surge/pitch/roll periodic motion whose frequency is close to the lowest natural sloshing frequency, a nine-dimensional Narimanov–Moiseev-type (modal) system of ordinary differential equations with respect to the hydrodynamic generalised coordinates was derived in the Part 1 (Faltinsen et al., J. Fluid Mech., vol. 487, 2003, pp. 1–42). Constructing and analysing asymptotic periodic solutions of the system made it possible to classify steady-state resonant sloshing and its stability for the harmonic reciprocating (longitudinal, diagonal and oblique) forcing. The results were supported by experimental observations and measurements. The present paper finalises the case studies by considering the three-dimensional non-parametric (combined sway, pitch, surge, roll and yaw, but no heave) cyclic tank motions. It becomes possible after establishing an asymptotic equivalence of the associated periodic solutions of the modal system to those for a suitable horizontal translatory elliptic forcing so that, as a consequence, resonant steady-state waves and their stability can be considered versus angular position, semi-axis ratio |δ1| and direction (counter- or clockwise) of the equivalent orbits. The circular orbit causes stable swirling waves (co-directed with the orbit) but may also excite stable nearly standing waves. The orbit direction does not affect the response curves for wall-symmetric (canonic) and diagonal orbit positions. This is not true for the oblique-type elliptic forcing. When the semi-axis ratio |δ1| changes from 0 to 1, the response curves exhibit astonishing metamorphoses significantly influencing the frequency ranges of stable nearly standing/swirling waves and ‘irregular’ sloshing. For the experimental input data by Ikeda et al. (J. Fluid Mech., vol. 700, 2012, pp. 304–328), the counter-directed swirling disappears as 0.5≲|δ1| but the frequency range of irregular waves vanishes for 0.75≲|δ1| .en_US
dc.publisherCambridge University Pressen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titleResonant three-dimensional nonlinear sloshing in a square base basin. Part 5. Three-dimensional non-parametric tank forcingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.source.journalJournal of Fluid Mechanicsen_US
dc.description.localcodeThis is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal