• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A footnote to a theorem Halász

Saias, Eric; Seip, Kristian
Journal article, Peer reviewed
Accepted version
View/Open
Saias (Locked)
URI
https://hdl.handle.net/11250/2679678
Date
2020
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1397]
  • Publikasjoner fra CRIStin - NTNU [19946]
Original version
Functiones et Approximatio Commentarii Mathematici. 2020, 63 125-131.   10.7169/facm/1847
Abstract
We study multiplicative functions f satisfying |f(n)|≤1 for all n, the associated Dirichlet series F(s):=∑∞n=1f(n)n−s, and the summatory function Sf(x):=∑n≤xf(n). Up to a possible trivial contribution from the numbers f(2k), F(s) may have at most one zero or one pole on the one-line, in a sense made precise by Hal\'{a}sz. We estimate logF(s) away from any such point and show that if F(s) has a zero on the one-line in the sense of Halász, then |Sf(x)|≤(x/logx)exp(cloglogx−−−−−−−√) for all c>0 when x is large enough. This bound is best possible.
Publisher
Adam Mickiewicz University, Faculty of Mathematics and Computer Science
Journal
Functiones et Approximatio Commentarii Mathematici

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit