• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanoconfined Water Dynamics in Multilayer Graphene Nanopores

Pan, Junchao; Xiao, Senbo; Zhang, Zhiliang; Wei, Ning; He, Jianying; Zhao, Junhua
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
Pan (6.087Mb)
URI
https://hdl.handle.net/11250/2675594
Date
2020
Metadata
Show full item record
Collections
  • Institutt for konstruksjonsteknikk [2034]
  • Publikasjoner fra CRIStin - NTNU [26746]
Original version
10.1021/acs.jpcc.0c04897
Abstract
Water dynamics in frictionless carbon nanotubes and across ultrathin graphene nanopores have been extensively studied. In contrast, the fundamental properties of nanoconfined water in multilayer graphene nanopores (MGPNs), namely nanopores with rough inner wall, are yet not explored. In this study, nanoconfined water in MGPNs with diameter D ranging from 0.82 to 3.4 nm were investigated by molecular dynamic simulations, providing key dynamics parameters including diffusion coefficient, friction coefficient and shear viscosity. The confinement effect of MGPNs was fully revealed, which indicated a critical pore diameter (Dc) of 1.36 nm determining internal water structure and dynamics. Confined water in MGPNs with diameter smaller than or equal to Dc exhibited layer structure and abnormal diffusion. For better understanding water dynamics in MGPNs, water flux and flow enhancement factor were characterized. All the calculated structural and dynamics properties of nanoconfined water in MGPNs were also compared with published results obtained from carbon nanotubes with similar sizes, which for the first time unveiled the impact of inner wall topology of nanopore on nanoconfined water. The results of this study thus laid the solid basis of potential applications of MGPNs and other nanopores with rough inner wall in adsorption and separation of complex fluids, DNA sequencing, seawater desalination, and many others.
Publisher
American Chemical Society
Journal
Journal of Physical Chemistry C

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit