Storm Track changes in the Middle East and North Africa under stratospheric aerosol geoengineering
Peer reviewed, Journal article
Published version

View/ Open
Date
2020Metadata
Show full item recordCollections
Abstract
As a potential approach to prevent dangerous climate change, stratospheric aerosol geoengineering (SAG) aims to reflect some incoming solar radiation into space and reduce temperatures. Previous modeling studies suggest that storm tracks will shift poleward due to the increases in the greenhouse gas concentrations. As a consequence of this, the Middle East, North Africa, and Mediterranean regions will most likely experience a strong precipitation decrease, increasing the pressure on the region's vulnerable environment. Our results from an Earth system model indicate that SAG can partially offset the poleward shift of the storm tracks, thus potentially soothing the environmental and water stresses of the region. However, other climatic side effects may occur, hence still motivating ambitious mitigation action to reduce emissions and impacts of global warming. The results presented may have practical implications for ongoing climate policy debates in the region.