Hydrogen production by water splitting using gas switching technology
Ugwu, Ambrose; Donat, Felix; Zaabout, Abdelghafour; Müller, Christoph; Albertsen, Knuth; Cloete, Schalk Willem Petrus; van Diest, Geert; Amini, Shahriar
Peer reviewed, Journal article
Published version
View/ Open
Date
2020Metadata
Show full item recordCollections
Abstract
This study demonstrates a novel“Gas Switching Water Splitting (GSWS)”technology for production of pure H2with integrated CO2capture. The reactor concept is based on the chemical looping technology where an oxygencarrier (metal oxide) is used to transport O2from air to the fuel for different redox reactions. Unlike the conven-tional chemical looping, Gas Switching Technology inherently avoids external circulation of the oxygen carrier byalternating the oxidizing and reducing gases in a single bubblingfluidized bed reactor. This greatly simplifies re-actor design leading to easier scale-up of the technology in comparison with the conventional chemical looping.Thefirst experimental demonstration of the GSWS concept was completed at atmospheric pressure and temper-atures ranging between 700 °C and 900 °C with iron-based oxygen carrier supported on alumina (~35 wt% Fe2O3on Al2O3). Approximately 99% H2purity was achieved at ~80% oxygen utilization. Significant fuel slippage wasobserved especially beyond 33% degree of reduction with some carbon deposition. The deposited carbon wasable to combust/gasify completely in the subsequent air stage which makes the concept robust in sustaining ox-ygen carrier life. However, the gas mixing between the GSWS stages reduced the H2purity, CO2purity, and CO2capture efficiency. Tominimizethe negative impact ofgas mixing, Cu dopedMg(Fe0.9Al0.1)2O4spinelwith 74 wt%active content was developed specifically for the second experimental demonstration. Despite the high stabilityand reactivity under redox conditions with TGA, this oxygen carrier did not perform optimally in 5 cm IDfluid-ized bed reactor because of excessive agglomeration at degree of reduction beyond 34%. In general, a range of theactive content between 35 and 70 wt% of the oxygen carrier was desired for optimal performance of the GSWSconcept