Vis enkel innførsel

dc.contributor.authorHans, Sebastian
dc.contributor.authorUlmer, Christian
dc.contributor.authorBrautaset, Trygve
dc.contributor.authorNeubauer, Peter
dc.contributor.authorCruz Bournazou, Mariano Nicolas
dc.date.accessioned2020-05-15T08:04:15Z
dc.date.available2020-05-15T08:04:15Z
dc.date.created2020-05-14T10:36:38Z
dc.date.issued2020
dc.identifier.citationProcesses. 2020, .en_US
dc.identifier.issn2227-9717
dc.identifier.urihttps://hdl.handle.net/11250/2654568
dc.description.abstractIn conditional microbial screening, a limited number of candidate strains are tested at different conditions searching for the optimal operation strategy in production (e.g., temperature and pH shifts, media composition as well as feeding and induction strategies). To achieve this, cultivation volumes of >10 mL and advanced control schemes are required to allow appropriate sampling and analyses. Operations become even more complex when the analytical methods are integrated into the robot facility. Among other multivariate data analysis methods, principal component analysis (PCA) techniques have especially gained popularity in high throughput screening. However, an important issue specific to high throughput bioprocess development is the lack of so-called golden batches that could be used as a basis for multivariate analysis. In this study, we establish and present a program to monitor dynamic parallel cultivations in a high throughput facility. PCA was used for process monitoring and automated fault detection of 24 parallel running experiments using recombinant E. coli cells expressing three different fluorescence proteins as the model organism. This approach allowed for capturing events like stirrer failures and blockage of the aeration system and provided a good signal to noise ratio. The developed application can be easily integrated in existing data- and device-infrastructures, allowing automated and remote monitoring of parallel bioreactor systems.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMonitoring Parallel Robotic Cultivations with Online Multivariate Analysisen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber16en_US
dc.source.journalProcessesen_US
dc.identifier.doi10.3390/pr8050582
dc.identifier.cristin1810954
dc.description.localcode© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal