Vis enkel innførsel

dc.contributor.authorSandell, Susanne
dc.contributor.authorMaire, Jeremie
dc.contributor.authorChavez-Angel, Emigdio
dc.contributor.authorSotomayor Torres, Clivia M.
dc.contributor.authorKristiansen, Helge
dc.contributor.authorZhang, Zhiliang
dc.contributor.authorHe, Jianying
dc.date.accessioned2020-05-13T12:05:49Z
dc.date.available2020-05-13T12:05:49Z
dc.date.created2020-04-03T12:11:31Z
dc.date.issued2020
dc.identifier.issn2079-4991
dc.identifier.urihttps://hdl.handle.net/11250/2654257
dc.description.abstractIn organic electronics, thermal management is a challenge, as most organic materials conduct heat poorly. As these devices become smaller, thermal transport is increasingly limited by organic–inorganic interfaces, for example that between a metal and a polymer. However, the mechanisms of heat transport at these interfaces are not well understood. In this work, we compare three types of metal–polymer interfaces. Polymethyl methacrylate (PMMA) films of different thicknesses (1–15 nm) were spin-coated on silicon substrates and covered with an 80 nm gold film either directly, or over an interface layer of 2 nm of an adhesion promoting metal—either titanium or nickel. We use the frequency-domain thermoreflectance (FDTR) technique to measure the effective thermal conductivity of the polymer film and then extract the metal–polymer thermal boundary conductance (TBC) with a thermal resistance circuit model. We found that the titanium layer increased the TBC by a factor of 2, from 59 × 106 W·m−2·K−1 to 115 × 106 W·m−2·K−1, while the nickel layer increased TBC to 139 × 106 W·m−2·K−1. These results shed light on possible strategies to improve heat transport in organic electronic systems.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEnhancement of Thermal Boundary Conductance of Metal–Polymer Systemen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume10en_US
dc.source.journalNanomaterialsen_US
dc.source.issue4en_US
dc.identifier.doi10.3390/nano10040670
dc.identifier.cristin1805186
dc.relation.projectNorges forskningsråd: 245963en_US
dc.relation.projectNorges forskningsråd: 251068en_US
dc.description.localcode© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal