dc.contributor.author | Torstensen, Jonathan Økland | |
dc.contributor.author | Helberg, Ragne M Lilleby | |
dc.contributor.author | Deng, Liyuan | |
dc.contributor.author | Gregersen, Øyvind Weiby | |
dc.contributor.author | Syverud, Kristin | |
dc.date.accessioned | 2020-04-02T08:52:42Z | |
dc.date.available | 2020-04-02T08:52:42Z | |
dc.date.created | 2019-01-16T16:04:13Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | International Journal of Greenhouse Gas Control. 2019, 81 93-102. | en_US |
dc.identifier.issn | 1750-5836 | |
dc.identifier.uri | https://hdl.handle.net/11250/2650027 | |
dc.description.abstract | In this paper, we explore the use of nanocelluloses as an additive to poly (vinyl alcohol) (PVA) nanocomposite membranes for CO2/N2 mixed-gas separation. Our findings are that several types of nanocellulose can be used to improve membrane performance. PVA/cellulose nanocrystals (CNC) nanocomposite membranes have the most promising performance, with increased CO2 permeance (127.8 ± 5.5 GPU) and increased CO2/N2 separation factor (39 ± 0.4) compared to PVA composite membranes, with permeance 105.5 ± 1.9 GPU and separation factor 36 ± 0.5. The performance of PVA/CNC membranes is similar compared to PVA/carbon nanotubes (CNTs) membranes shown earlier. Thus, CNTs can be replaced by CNC that is biodegradable and non-toxic. Investigating several different nanocellulose types reveal that a high nanocellulose charge and small nanocellulose particles are important nanocellulose traits that improve membrane performance. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.no | * |
dc.title | PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | acceptedVersion | en_US |
dc.source.pagenumber | 93-102 | en_US |
dc.source.volume | 81 | en_US |
dc.source.journal | International Journal of Greenhouse Gas Control | en_US |
dc.identifier.doi | 10.1016/j.ijggc.2018.10.007 | |
dc.identifier.cristin | 1658618 | |
dc.relation.project | Norges forskningsråd: 239172 | en_US |
dc.description.localcode | © 2019. This is the authors’ accepted and refereed manuscript to the article. Locked until 26 December 2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
cristin.unitcode | 194,66,30,0 | |
cristin.unitname | Institutt for kjemisk prosessteknologi | |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 2 | |