• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for medisin og helsevitenskap (MH)
  • Institutt for sirkulasjon og bildediagnostikk
  • View Item
  •   Home
  • Fakultet for medisin og helsevitenskap (MH)
  • Institutt for sirkulasjon og bildediagnostikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative Doppler Methods in Cardiovascular Imaging

Fredriksen, Tonje Dobrowen
Doctoral thesis
Thumbnail
View/Open
767865_FULLTEXT01.pdf (8.145Mb)
URI
http://hdl.handle.net/11250/264939
Date
2014
Metadata
Show full item record
Collections
  • Institutt for sirkulasjon og bildediagnostikk [2085]
Abstract
Ultrasound imaging of blood flow in the heart and blood vessels has become an essential part of diagnosing diseases related to the circulatory system. By using different Doppler methods, the blood flow may be visualized or quantified. In this work we take advantage of the opportunities given by the introduction of parallel processing of ultrasound data to develop new quantitative Doppler methods.

Pulsed wave (PW) Doppler is a technique for measuring blood velocities, providing the full velocity spectrum in a specific region of interest. The maximum velocities may be found by delineation of the spectral envelope, and may be used to estimate the severity of stenoses or valve leakages. However, PW Doppler suffers from several challenges, which makes quantitative analysis problematic. To limit spectral broadening, we created a new method called 2-D tracking Doppler, which incorporates information from several parallel receive beams. Spectra with improved resolution and signal-to-noise ratio were produced for a large span of beam-to-flow angles. The new method was tested using in vitro and in vivo recordings. A signal model was derived and the expected Doppler power spectra were calculated, showing good agreement with experimental data.

Experiments were performed to investigate how the 2-D tracking Doppler method depends on the tracking angle. It was shown that the spectra have lowest bandwidth and maximum power when the tracking angle is equal to the beam-to-flow angle. This may facilitate new techniques for velocity calibration. It was shown that the velocity calibration errors may be lower for the 2-D tracking Doppler method than for a conventional PW Doppler approach, and especially for large beam-to-flow angles.

In heart disease, the quantification of valve regurgitation is a remaining challenge. In this thesis, we have investigated a new technique to estimate the size of regurgitant jets using spectral Doppler and parallel beamforming. A modality that uses high pulse repetition frequency 3-D Doppler was devised, to isolate the backscattered signal power from the vena contracta, that is the narrowest flow region of a regurgitant jet. A simulation study was performed to test and optimize the new method, suggesting a feasible setup for the transmit- and receive beams. Cross-sectional power Doppler images of simulated regurgitations of various sizes were generated, and the regurgitant volumes were accurately estimated. Since the velocity-time integral and the orifice area are extracted from a single recording, the proposed method may give more robust volume estimates than methods where the velocities and the area are measured from separate recordings.
Has parts
Fredriksen, Tonje Dobrowen; Ekroll, Ingvild Kinn; Løvstakken, Lasse; Torp, Hans. 2-D Tracking Doppler. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. (ISSN 0885-3010). 60(9): 1896-1905, 2013. 10.1109/TUFFC.2013.2774.

Fredriksen, Tonje Dobrowen; Avdal, Jørgen; Ekroll, Ingvild Kinn; Dahl, Torbjørn; Løvstakken, Lasse; Torp, Hans. Investigations of spectral resolution and angle dependency in a 2-D tracking doppler method. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. (ISSN 0885-3010). 61(7): 1161-1170, 2014. 10.1109/TUFFC.2014.3015.

Fredriksen, Tonje Dobrowen; Torp, Hans; Hergum, Torbjørn. Quantification of Mitral Regurgitation Using PW Doppler and Parallel Beamforming. IEEE International Ultrasonics Symposium Proceedings. (ISSN 1051-0117): 434-437, 2011. 10.1109/ULTSYM.2011.0104.
Publisher
Norges teknisk-naturvitenskapelige universitet, Det medisinske fakultet, Institutt for sirkulasjon og bildediagnostikk
Series
Doktoravhandlinger ved NTNU, 1503-8181; 2014:312

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit