Show simple item record

dc.contributor.authorBartl, Jan
dc.contributor.authorMühle, Franz Volker
dc.contributor.authorHansen, Thomas
dc.contributor.authorAdaramola, Muyiwa S.
dc.contributor.authorSætran, Lars Roar
dc.description.abstractAn experimental study of the near wake up to four rotor diameters behind a model wind turbine rotor with two different wing tip configurations is performed. A straight‐cut wing tip and a downstream‐facing winglet shape are compared on the same two‐bladed rotor operated at its design tip speed ratio. Phase‐averaged measurements of the velocity vector are synchronized with the rotor position, visualizing the downstream location of tip vortex interaction for the two blade tip configurations. The mean streamwise velocity is found not to be strongly affected by the presence of winglet tip extensions, suggesting an insignificant effect of winglets on the time‐averaged inflow conditions of a possible downstream wind turbine. An analysis of the phase‐averaged vorticity, however, reveals a significantly earlier tip vortex interaction and breakup for the wingletted rotor. In contradistinction, the tip vortices formed behind the reference configuration are assessed to be more stable and start merging into larger turbulent structures significantly further downstream. These results indicate that an optimized winglet design can not only contribute to a higher energy extraction in a rotor's tip region but also can positively affect the wake's mean kinetic energy recovery by stimulating a faster tip vortex interaction.en_US
dc.publisherWiley Online Libraryen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titleAn experimental study on the effects of winglets on the tip vortex interaction in the near wake of a model wind turbineen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.source.journalWind Energyen_US
dc.description.localcodeThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,provided the original work is properly cited. ©2020 TheAuthors.Wind Energy published by John Wiley & Sons Ltden_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal