Vis enkel innførsel

dc.contributor.authorEkroll, Ingvild Kinnnb_NO
dc.date.accessioned2014-12-19T14:24:02Z
dc.date.available2014-12-19T14:24:02Z
dc.date.created2013-03-19nb_NO
dc.date.issued2013nb_NO
dc.identifier612055nb_NO
dc.identifier.isbn978-82-471-4203-5 (printed ver.)nb_NO
dc.identifier.isbn978-82-471-4205-9 (electronic ver.)nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/264835
dc.description.abstractUltrasound imaging of blood flow is in widespread use for assessment of atherosclerotic disease. Imaging of the carotid arteries is of special interest, as blood clots from atherosclerotic plaques may follow the blood stream to the brain with fatal consequences. Color flow imaging and PW Doppler are important tools during patient examination, providing a map of the mean velocities in an image region and the full velocity spectrum in a small region of interest respectively. However they both suffer from limitations which may hamper patient diagnostics. Recent technological advances have enabled an increased acquisition rate of ultrasound images, providing possibilities for further improvement in robustness and accuracy of color flow and PW Doppler imaging. Based on these advances, we aimed to utilize the high acquisition rate to enable robust vector Doppler imaging, where both velocity magnitude and direction is estimated. Additionally, we wanted to incorporate information from several parallel receive beams in spectral Doppler, which is currently limited to velocity estimation in a limited region of a single beam. Two limitations in conventional PW Doppler are especially considered, namely the trade-off between temporal and spectral resolution, and the increased spectral broadening in situations of high velocity or large beam-to-flow angles. By utilizing information from several parallel receive beams, we show that by applying adaptive spectral estimation techniques, it is possible to obtain high quality PW Doppler spectra from ensembles similar to those found in conventional color flow imaging. A new method to limit spectral broadening is also presented, and we show spectra with improved resolution and signal-to-noise ratio for a large span in beam-to-flow angles. Plane wave vector Doppler imaging was investigated using both realistic simulations of flow in a (diseased) carotid artery bifurcation, and in vivo studies. It was found that the plane wave approach could provide robust vector velocity estimates at frame rates significantly higher than what is found in conventional blood flow imaging. The technique was implemented in a research ultrasound system, and a feasibility study was performed in patients with carotid artery disease. Promising results were found, showing an increased velocity span and the successful capture of complex flow patterns. All together, the proposed techniques may provide more efficient clinical tools for vascular imaging, as well as quantitative information for research into new markers for cardiovascular disease.nb_NO
dc.languageengnb_NO
dc.publisherNorges teknisk-naturvitenskapelige universitet, Det medisinske fakultet, Institutt for sirkulasjon og bildediagnostikknb_NO
dc.relation.ispartofseriesDoktoravhandlinger ved NTNU, 1503-8181; 2013:54nb_NO
dc.relation.haspartEkroll, Ingvild Kinn; Torp, Hans; Løvstakken, Lasse. Spectral Doppler estimation utilizing 2-D spatial information and adaptive signal processing.. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. (ISSN 0885-3010). 59(6): 1182-92, 2012. <a href='http://dx.doi.org/10.1109/TUFFC.2012.2308'>10.1109/TUFFC.2012.2308</a>. <a href='http://www.ncbi.nlm.nih.gov/pubmed/22711413'>22711413</a>.nb_NO
dc.relation.haspartFredriksen, Tonje Dobrowen; Ekroll, Ingvild Kinn; Løvstakken, Lasse; Torp, Hans. 2-D Tracking Doppler. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. (ISSN 0885-3010). 60(9): 1896-1905, 2013. <a href='http://dx.doi.org/10.1109/TUFFC.2013.2774'>10.1109/TUFFC.2013.2774</a>.nb_NO
dc.relation.haspartEkroll, Ingvild Kinn; Swillens, Abigail; Segers, Patrick; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse. Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging.. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. (ISSN 0885-3010). 60(4): 727-38, 2013. <a href='http://dx.doi.org/10.1109/TUFFC.2013.2621'>10.1109/TUFFC.2013.2621</a>. <a href='http://www.ncbi.nlm.nih.gov/pubmed/23549533'>23549533</a>.nb_NO
dc.relation.haspartEkroll, Ingvild Kinn; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse. Combined vector velocity and spectral Doppler imaging of complex blood flow in the carotid arteries. .nb_NO
dc.titleUltrasound imaging of blood flow based on high frame rate acquisition and adaptive signal processingnb_NO
dc.typeDoctoral thesisnb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Det medisinske fakultet, Institutt for sirkulasjon og bildediagnostikknb_NO
dc.description.degreePhD i medisinsk teknologinb_NO
dc.description.degreePhD in Medical Technologyen_GB


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel