• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Monolithic and Microservice deployment of Network Functions

Sharma, Sachin; Uniyal, Navdeep; Tola, Besmir; Jiang, Yuming
Chapter
Accepted version
Thumbnail
View/Open
Sharma (1003.Kb)
URI
http://hdl.handle.net/11250/2643014
Date
2019
Metadata
Show full item record
Collections
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi [2002]
  • Publikasjoner fra CRIStin - NTNU [26746]
Original version
http://dx.doi.org/10.1109/NETSOFT.2019.8806705
Abstract
Network Function Virtualization (NFV) has recently attracted telecom operators to migrate network functionalities from expensive bespoke hardware systems to virtualized IT infrastructures where they are deployed as software components. Scalability, up-gradation, fault tolerance and simplified testing are important challenges in the field of NFV. In order to overcome these challenges, there is significant interest from research communities to scale or decompose network functions using the monolithic and microservice approach. In this paper, we compare the performance of both approaches using an analytic model and implementing test-bed experiments. In addition, we calculate the number of instances of monoliths or microservices in which a network function could be scaled or decomposed in order to get the maximum or required performance. Single and multiple CPU core scenarios are considered. Experimentation is performed by using an open source network function, SNORT and running monoliths and microservices of SNORT as Docker containers on bare metal machines. The experimental results compare the performance of monolith and microservice approaches and are used to estimate the validity of the analytic model. The results also show the effectiveness of our approach in finding the number of instances (monoliths or microservices) required to maximize performance.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit