The Specificity of Output from Medial Entorhinal Cortex
Master thesis
Permanent lenke
http://hdl.handle.net/11250/264283Utgivelsesdato
2013Metadata
Vis full innførselSamlinger
Sammendrag
The hippocampal formation(HF) and the parahippocampal region (PHR) have been implicated in learning and memory functions. These regions and their subregions form a highly interconnected and complex microcircuitry, where the entorhinal cortex consitutes the nodal point between the hippocampal formation and the cortex. The entorhinal cortex conssists of ywo functionally distinct subregions. It had been suggested that this diffrence in functional output results from differences in microcircuitry, and input and output characteristics whithin the regions. Therefore, in order to understand the function of the entorhinal cortex and how it contributes to the rest of the HF-PHR network, it is necessary to understand the microcircuity whitin the region.
This study investigates the specificity of output from cell populations located in superficial layers of the medial entorhinal cortex. Fluorescent retrograde traces were injected into dorsal dentate gyrus(DG)and the dorsal medial enthorhinal cortex(MEC). Additional immunohistochemistry was performed in order to investigate the chemical markers for the retrogradely labelled cell populations. Labelled cells and possible colocalization of markers were analysedwith fluorescent microscopy. The results indicate the presence of a least three separate cell populations in superficial layers of MEC with different projection patterns and chemical markers. It remains to be seen how the cell populations described here relate to the functionally defined cell populations found in MEC.