• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of turbulence on mass transfer rates between inertial polydisperse particles and fluid

Karchniwy, Ewa Malgorzata; Klimanek, Adam F.; Haugen, Nils Erland L
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Karchniwy (2.188Mb)
URI
http://hdl.handle.net/11250/2640696
Date
2019
Metadata
Show full item record
Collections
  • Institutt for energi og prosessteknikk [2630]
  • Publikasjoner fra CRIStin - NTNU [19849]
Original version
Journal of Fluid Mechanics. 2019, 874 1147-1168.   10.1017/jfm.2019.493
Abstract
The current work investigates how turbulence affects the mass transfer rate between inertial particles and fluid in a dilute, polydisperse particle system. Direct numerical simulations are performed in which all scales of turbulence are fully resolved and particles are represented in a Lagrangian reference frame. The results show that, similarly to a monodisperse system, the mass transfer rate between particles and fluid decreases as a result of particle clustering. This occurs when the flow time scale (based on the turbulence integral scale) is long relative to the chemical time scale, and is strongest when the particle time scale is one order of magnitude smaller than the flow time scale (i.e. the Stokes number is around 0.1). It is also found that for larger solid mass fractions, the clustering of the heavier particles is enhanced by the effect of drag force from the particles on the fluid (momentum back-reactions or two-way coupling). In particular, when two-way coupling is accounted for, locations of particles of different sizes are much more correlated, which leads to a stronger effect of clustering, and thus a greater reduction of the particle-fluid mass transfer rate. © 2019 Cambridge University Press.
Publisher
Cambridge University Press
Journal
Journal of Fluid Mechanics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit