Vis enkel innførsel

dc.contributor.authorSong, Xianfeng
dc.contributor.authorKane, Pascal-Alexandre
dc.contributor.authorAbooshahab, Mohammad Ali
dc.date.accessioned2020-02-05T10:21:38Z
dc.date.available2020-02-05T10:21:38Z
dc.date.created2020-01-20T12:32:08Z
dc.date.issued2020
dc.identifier.isbn9781510876651
dc.identifier.urihttp://hdl.handle.net/11250/2639766
dc.description.abstractDown-The-Hole (DTH) percussion tool is recognized for its high average rate of penetration (ROP), when drilling medium hard to very hard rock formations. This ROP which depends on the bit-rock contact conditions at the well bottom to efficiently transfer the impact energy to an intact rock can be maximized for certain parameter sets, including the static weight on bit (WOB, also known as thrust force/feed force). Indeed, recent experimental and numerical investigations of the bit-rock interface (BRI) have revealed an optimum WOB which is rooted in the dependence of the BRI law on theWOB force. That is an optimal state of pseudo-stiffness at the BRI can be obtained with the appliedWOB for which the impact energy transmitted to rock is maximized. Therefore, accurate estimation and control of the BRI stiffness is crucial in order to optimize drilling operation. In this paper, a numerical solution is proposed which can estimate the state of drilling dynamics and evolving BRI stiffness. This approach combines a 1D phenomenological percussive drilling model accounting for the longitudinal wave transmission during bit-rock interaction and a joint Unscented Kalman Filter (UKF) designed to simultaneously estimate the unknown parameters in the nonlinear BRI stiffness expression as well as the inaccessible states at the BRI. The results show that this approach has the potential to provide an accurate estimation of the percussive drilling dynamics and nonlinear BRI stiffness evolution over a wide range of initial conditions and static deformations that induced from changing WOB.nb_NO
dc.language.isoengnb_NO
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)nb_NO
dc.relation.ispartofThe 38th Chinese Control Conference (CCC2019)
dc.titleUnscented Kalman Filter Based State and Parameter Estimation in Percussive Drilling Systemsnb_NO
dc.typeChapternb_NO
dc.description.versionacceptedVersionnb_NO
dc.identifier.doi10.23919/ChiCC.2019.8865401
dc.identifier.cristin1777609
dc.relation.projectNorges forskningsråd: 254984nb_NO
dc.description.localcode© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.nb_NO
cristin.unitcode194,63,25,0
cristin.unitnameInstitutt for teknisk kybernetikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel