• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of argon, air and hydrogen gas on thermal conductivity of gas diffusion layers and temperature gradients in PEMFCs

Bock, Robert; Hamre, Bjørnar; Onsrud, Morten Andreas; Karoliussen, Håvard; Seland, Frode; Burheim, Odne Stokke
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
Bock (1.384Mb)
Permanent lenke
http://hdl.handle.net/11250/2639755
Utgivelsesdato
2019
Metadata
Vis full innførsel
Samlinger
  • Institutt for energi og prosessteknikk [2712]
  • Publikasjoner fra CRIStin - NTNU [20997]
Originalversjon
ECS Transactions. 2019, 92 (8), 223-245.   10.1149/09208.0223ecst
Sammendrag
Gas diffusion layers (GDL) in fuel cells have to satisfy a range of conflicting demands. They must deliver good mass transport, but also good electrical and thermal transport. The thermal conductivity of two GDLs was measured with either hydrogen or argon present inside the pores. The results show an increase of up to 19% with regard to the thermal conductivity for the Freudenberg H1410 GDL with hydrogen present in the pores as opposed to measurements with air present. The thermal conductivity in the Sigracet 10BA GDL was also enhanced, with an increase of 15% with hydrogen present in the pores. This correlates with the thermal conductivity of hydrogen gas, which is higher than that of air. Furthermore, the results suggest that the GDL materials have a lower thermal conductivity with argon gas present in the pores. The thermal conductivity for Freudenberg H1410 increased from 0.119±0.011 WK-1m-1 for air to a thermal conductivity of 0.140±0.015 WK-1m-1 for hydrogen gas at a compaction pressure of 10 bar. The thermal conductivity of Sigracet 10BA increased from 0.30±0.05 WK-1m-1 for air to a thermal conductivity of 0.32±0.03 WK-1m-1 for hydrogen gas at a compaction pressure of 10 bar. These results suggest that the gas present in the pores has an influence on the thermal conductivity of the GDL. Additionally, a 2D thermal model has been constructed to represent the impact of the results on the temperature distribution inside a fuel cell.
Utgiver
Electrochemical Society
Tidsskrift
ECS Transactions

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit