• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Water-repellent surfaces consisting of nanowires on micro-pyramidal structures

Zhang, Wenjing; Ding, Wenwu; Fernandino, Maria; Dorao, Carlos Alberto
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Zhang (7.271Mb)
URI
http://hdl.handle.net/11250/2638366
Date
2019
Metadata
Show full item record
Collections
  • Institutt for energi og prosessteknikk [2622]
  • Publikasjoner fra CRIStin - NTNU [19694]
Original version
ACS Applied Nano Materials. 2019, 2 7696-7704.   10.1021/acsanm.9b01767
Abstract
Super-repellent surfaces are relevant for several practical applications, such as water collection and self-cleaning and anti-icing surfaces. However, designing surfaces that can maintain their super-repellency when the surface is subjected to a humid environment is still a challenge. Here, we present a two-tier roughness surface consisting of nanowires on micropyramidal structures. We compare the wetting properties of this surface with other single-level roughness surfaces and surfaces with nanowires on micropillars, so as to investigate the role of the two-tier roughness with micropyramidal structures. Surfaces are characterized by both the static contact angle and sliding angle of a water droplet on the surfaces. The characterization is performed also for the surfaces after these ones have been subjected to condensation conditions. Compared to the single-level roughness surfaces and surfaces with nanowires on pillars, the surface with nanowires on pyramidal structures shows no degradation of water repellency properties during condensation, and shows better performance in terms of low droplet adhesion than similar surfaces composed of the more commonly used pillar structures. This is thanks to the nanowires’ roughness that minimizes the contact area of the droplets with the base surface and the V-shaped cavities between the pyramids that provide the droplets with an upward driving force due to Laplace pressure. Furthermore, this study shows the importance of characterizing surface wetting properties not only on dry but also on wet conditions. The combination of a nanoscale roughness with micropyramidal structures appears as an attractive solution for super-repellent substrates under humid and wet conditions.
Publisher
American Chemical Society
Journal
ACS Applied Nano Materials

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit