Vis enkel innførsel

dc.contributor.authorBock, Robert
dc.contributor.authorKaroliussen, Håvard
dc.contributor.authorSeland, Frode
dc.contributor.authorPollet, Bruno
dc.contributor.authorThomassen, Magnus
dc.contributor.authorHoldcroft, Steven
dc.contributor.authorBurheim, Odne Stokke
dc.date.accessioned2020-01-21T09:05:09Z
dc.date.available2020-01-21T09:05:09Z
dc.date.created2019-02-17T17:26:51Z
dc.date.issued2019
dc.identifier.citationInternational journal of hydrogen energy. 2019, 45 (2), 1236-1254.nb_NO
dc.identifier.issn0360-3199
dc.identifier.urihttp://hdl.handle.net/11250/2637154
dc.description.abstractWater electrolyzers that use a membrane electrolyte between the electrodes are a promising technology towards mass production of renewable hydrogen. High power setups produce a lot of heat which has to be transported through the cell, making heat management essential. Knowing thermal conductivity values of the employed materials is crucial when modeling the temperature distribution inside an electrolyzer. The thermal conductivity was measured for different titanium-based porous transport layers (PTL) and a partially methylated Hexamethyl-p-Terphenyl Polybenzimidazolium (HMT-PMBI-Cl- membrane. The four titanium-based sintered transport layers materials have thermal conductivities between 1.0 and 2.5 0.2 WK−1m−1 at 10 bar compaction pressure. The HMT-PMBI-Cl- membrane has a thermal conductivity of 0.19 0.04 WK−1m−1 at 0% relative humidity at 10 bar compaction pressure and 0.21 0.03 WK−1m−1 at 100% relative humidity ( water molecules per ion exchange site at room temperature) at 10 bar compaction pressure. Combining the determined thermal conductivity values with data from the literature, 2D thermal models of a proton exchange membrane water electrolyzer (PEMWE) and an anion exchange membrane water electrolyzer (AEMWE) were built to evaluate the temperature distribution in the through-plane direction. A temperature difference of 7–17 K was shown to arise between the center of the membrane electrode assembly and bipolar plates for the PEMWE and more than 18 K for the AEMWE.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMeasuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modelingnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1236-1254nb_NO
dc.source.volume45nb_NO
dc.source.journalInternational journal of hydrogen energynb_NO
dc.source.issue2nb_NO
dc.identifier.doi10.1016/j.ijhydene.2019.01.013
dc.identifier.cristin1678040
dc.relation.projectNorges forskningsråd: 261620nb_NO
dc.description.localcodeThis is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.nb_NO
cristin.unitcode194,64,25,0
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal