• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing sampling coverage of species distribution in biodiversity databases

Sporbert, Maria; Bruelheide, Helge; Seidler, Gunnar; Keil, Petr; Jandt, Ute; Austrheim, Gunnar; Biurrun, Idoia; Campos, Juan Antonio; Čarni, Andraž; Chytrý, Milan; Csiky, János; De Bie, Els; Dengler, Jürgen; Golub, Valentin; Grytnes, John-Arvid; Indreica, Adrian; Jansen, Florian; Jiroušek, Martin; Lenoir, Jonathan; Luoto, Miska; Marcenó, Corrado; Moeslund, Jesper Erenskjold; Pérez-Haase, Aaron; Rūsiņa, Solvita; Vandvik, Vigdis; Vassilev, Kiril; Welk, Erik
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Sporbert (2.244Mb)
URI
http://hdl.handle.net/11250/2635828
Date
2019
Metadata
Show full item record
Collections
  • Institutt for naturhistorie [1054]
  • Publikasjoner fra CRIStin - NTNU [26746]
Original version
Journal of Vegetation Science. 2019, 30 (4), 620-632.   10.1111/jvs.12763
Abstract
Aim

Biodiversity databases are valuable resources for understanding plant species distributions and dynamics, but they may insufficiently represent the actual geographic distribution and climatic niches of species. Here we propose and test a method to assess sampling coverage of species distribution in biodiversity databases in geographic and climatic space.

Location

Europe.

Methods

Using a test selection of 808,794 vegetation plots from the European Vegetation Archive (EVA), we assessed the sampling coverage of 564 European vascular plant species across both their geographic ranges and realized climatic niches. Range maps from the Chorological Database Halle (CDH) were used as background reference data to capture species geographic ranges and to derive species climatic niches. To quantify sampling coverage, we developed a box‐counting method, the Dynamic Match Coefficient (DMC), which quantifies how much a set of occurrences of a given species matches with its geographic range or climatic niche. DMC is the area under the curve measuring the match between occurrence data and background reference (geographic range or climatic niche) across grids with variable resolution. High DMC values indicate good sampling coverage. We applied null models to compare observed DMC values with expectations from random distributions across species ranges and niches.

Results

Comparisons with null models showed that, for most species, actual distributions within EVA are deviating from null model expectations and are more clumped than expected in both geographic and climatic space. Despite high interspecific variation, we found a positive relationship in DMC values between geographic and climatic space, but sampling coverage was in general more random across geographic space.

Conclusion

Because DMC values are species‐specific and most biodiversity databases are clearly biased in terms of sampling coverage of species occurrences, we recommend using DMC values as covariates in macro‐ecological models that use species as the observation unit.
Publisher
Wiley
Journal
Journal of Vegetation Science

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit