Vis enkel innførsel

dc.contributor.authorPayod, R. B.
dc.contributor.authorGrassano, D.
dc.contributor.authorSantos, G. N. C.
dc.contributor.authorLevshov, D. I.
dc.contributor.authorPulci, O.
dc.contributor.authorSaroka, Vasil
dc.date.accessioned2020-01-06T07:19:40Z
dc.date.available2020-01-06T07:19:40Z
dc.date.created2020-01-04T13:41:42Z
dc.date.issued2020
dc.identifier.citationNature Communications. 2020, 11 (82)nb_NO
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/11250/2634886
dc.description.abstractDevelopment of on-chip integrated carbon-based optoelectronic nanocircuits requires fast and non-invasive structural characterization of their building blocks. Recent advances in synthesis of single wall carbon nanotubes and graphene nanoribbons allow for their use as atomically precise building blocks. However, while cataloged experimental data are available for the structural characterization of carbon nanotubes, such an atlas is absent for graphene nanoribbons. Here we theoretically investigate the optical absorption resonances of armchair carbon nanotubes and zigzag graphene nanoribbons continuously spanning the tube (ribbon) transverse sizes from 0.5(0.4) nm to 8.1(12.8) nm. We show that the linear mapping is guaranteed between the tube and ribbon bulk resonance when the number of atoms in the tube unit cell is 2N+4, where N is the number of atoms in the ribbon unit cell. Thus, an atlas of carbon nanotubes optical transitions can be mapped to an atlas of zigzag graphene nanoribbons.nb_NO
dc.language.isoengnb_NO
dc.publisherNature Researchnb_NO
dc.relation.urihttps://rdcu.be/bZS5A
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectElektromagnetismenb_NO
dc.subjectElectromagnetismnb_NO
dc.subjectKvantefysikknb_NO
dc.subjectQuantum physicsnb_NO
dc.subjectKvantekjeminb_NO
dc.subjectQuantum chemistrynb_NO
dc.title2N+4-rule and an atlas of bulk optical resonances of zigzag graphene nanoribbonsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.subject.nsiVDP::Kondenserte fasers fysikk: 436nb_NO
dc.subject.nsiVDP::Condensed matter physics: 436nb_NO
dc.source.volume11nb_NO
dc.source.journalNature Communicationsnb_NO
dc.source.issue82nb_NO
dc.identifier.doi10.1038/s41467-019-13728-8
dc.identifier.cristin1766240
dc.relation.projectEC/H2020/644076nb_NO
dc.relation.projectNorges forskningsråd: 262633nb_NO
dc.description.localcodeOpen Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal