• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gold Price Forecast Based on LSTM-CNN Model

He, Zhanhong; Zhou, Junhao; Dai, Hong-Ning; Wang, Hao
Chapter
Accepted version
Thumbnail
View/Open
He (995.3Kb)
URI
http://hdl.handle.net/11250/2631121
Date
2019
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [4913]
  • Publikasjoner fra CRIStin - NTNU [26648]
Original version
https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00188
Abstract
An accurate prediction is certainly significant in financial data analysis. Investors have used a series of econometric techniques on pricing, stock selection and risk management but few of them have found great success due to the fact that most of them only are purely based on a single scheme. Recent advances in deep learning methods have also demonstrated the outstanding performance in the fields of image recognition and sentiment analysis. In this paper, we originally propose a novel gold price forecast method based on the integration of Long Short-Term Memory Neural Networks (LSTM) and Convolutional Neural Networks (CNN) with Attention Mechanism (denoted to LSTM-Attention-CNN model). Particularly, the LSTM-Attention-CNN model consists of three components: the LSTM component, Attention Mechanism and the CNN component. The LSTM component enables to harness the sequential order of daily gold price. Meanwhile, the Attention Mechanism assigns different attention weights on the new encoding method from LSTM component to enhance the extraction of the temporal and spatial features. In addition, the CNN component enables to capture the local patterns and abstract the spatial features. Extensive experiments on real dataset collected from World Gold Council show that our proposed approach outperforms other conventional financial forecast methods.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit