• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Optimal Convergence Rate of Monotone Schemes for Conservation Laws in the Wasserstein Distance

Ruf, Adrian Montgomery; Sande, Espen; Solem, Susanne
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Ruf (183.9Kb)
URI
http://hdl.handle.net/11250/2630650
Date
2019
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [2672]
  • Publikasjoner fra CRIStin - NTNU [41867]
Original version
10.1007/s10915-019-00996-1
Abstract
In 1994, Nessyahu, Tadmor and Tassa studied convergence rates of monotone finite volume approximations of conservation laws. For compactly supported, Lip+ -bounded initial data they showed a first-order convergence rate in the Wasserstein distance. Our main result is to prove that this rate is optimal. We further provide numerical evidence indicating that the rate in the case of Lip+ -unbounded initial data is worse than first-orde
Publisher
Springer Verlag
Journal
Journal of Scientific Computing

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit