Vis enkel innførsel

dc.contributor.authorAbdollahpouri, Mohammad
dc.contributor.authorBatista, Gabriel
dc.contributor.authortakacs, gergely
dc.contributor.authorJohansen, Tor Arne
dc.contributor.authorRohal-Ilkiv, Boris
dc.date.accessioned2019-11-25T10:52:27Z
dc.date.available2019-11-25T10:52:27Z
dc.date.created2019-04-30T14:35:17Z
dc.date.issued2019
dc.identifier.citationMechanical systems and signal processing. 2019, 114 512-527.nb_NO
dc.identifier.issn0888-3270
dc.identifier.urihttp://hdl.handle.net/11250/2630224
dc.description.abstractParameter estimation problems can be nonlinear, even if the dynamics are expressed by a linear model. The extended Kalman filter (EKF), even though it is one of the most popular nonlinear estimation techniques, may not converge without sufficient a priori information. This paper utilizes a globally convergent nonlinear estimation method—the double Kalman filter (DKF)—for a vibrating cantilever beam. A globally valid linear time-varying (LTV) model is required by the first stage of the DKF depending on some conditions on input and output excitation. Without considering noise, this LTV model provides the first stage and is globally equivalent to the nonlinear system. Since the neglected input and output noises can degrade the quality of estimation, the second stage linearizes the nonlinear dynamics, utilizing the nominally globally convergent estimate of the first stage, and improves the quality of estimation. Both estimation methods were applied to a cantilever beam setup in real-time. An adaptive linear quadratic regulator utilizes the estimated parameters to attenuate unknown transient disturbances. Different scenarios have been explored, providing a fair comparison between EKF and DKF. These methods have been implemented on an embedded ARM-based microcontroller unit and illustrates improved convergent properties of the DKF over the EKF. The global stability of the DKF is verified and it has been observed that it needs twice the computational cost of the EKF.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleAdaptive vibration attenuation with globally convergent parameter estimationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber512-527nb_NO
dc.source.volume114nb_NO
dc.source.journalMechanical systems and signal processingnb_NO
dc.identifier.doi10.1016/j.ymssp.2018.05.034
dc.identifier.cristin1694808
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 25.5.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,63,25,0
cristin.unitnameInstitutt for teknisk kybernetikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal