Vis enkel innførsel

dc.contributor.authorJernelv, Ine Larsen
dc.contributor.authorStrøm, Karina
dc.contributor.authorHjelme, Dag Roar
dc.contributor.authorAksnes, Astrid
dc.date.accessioned2019-11-25T09:46:36Z
dc.date.available2019-11-25T09:46:36Z
dc.date.created2019-11-24T08:41:25Z
dc.date.issued2019
dc.identifier.citationSensors. 2019, .nb_NO
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/11250/2630186
dc.description.abstractThe development of rapid and accurate biomedical laser spectroscopy systems in the mid-infrared has been enabled by the commercial availability of external-cavity quantum cascade lasers (EC-QCLs). EC-QCLs are a preferable alternative to benchtop instruments such as Fourier transform infrared spectrometers for sensor development as they are small and have high spectral power density. They also allow for the investigation of multiple analytes due to their broad tuneability and through the use of multivariate analysis. This article presents an in vitro investigation with two fiber-coupled measurement setups based on attenuated total reflection spectroscopy and direct transmission spectroscopy for sensing. A pulsed EC-QCL (1200–900 cm −1 ) was used for measurements of glucose and albumin in aqueous solutions, with lactate and urea as interferents. This analyte composition was chosen as an example of a complex aqueous solution with relevance for biomedical sensors. Glucose concentrations were determined in both setup types with root-mean-square error of cross-validation (RMSECV) of less than 20 mg/dL using partial least-squares (PLS) regression. These results demonstrate accurate analyte measurements, and are promising for further development of fiber-coupled, miniaturised in vivo sensors based on mid-infrared spectroscopy.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPInb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleInfrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applicationsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber14nb_NO
dc.source.journalSensorsnb_NO
dc.identifier.doi10.3390/s19235130
dc.identifier.cristin1751407
dc.description.localcode(C) 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).nb_NO
cristin.unitcode194,63,35,0
cristin.unitnameInstitutt for elektroniske systemer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal