Show simple item record

dc.contributor.authorKatsikogiannis, George
dc.contributor.authorBachynski, Erin Elizabeth
dc.contributor.authorPage, Ana M.
dc.identifier.citationJournal of Physics: Conference Series. 2019, 1365 .nb_NO
dc.description.abstractThe importance of foundation modelling for the support-structure fatigue damage estimation of a 10 MW monopile based offshore wind turbine is investigated in different operational states and wind-wave misalignment conditions. Three different models are used: (1) a non-linear elasto-plastic model including hysteretic behaviour effects, (2) a linear elastic model and (3) a non-linear elastic model, using numerical simulations with an aero-hydro-servo-elastic computational tool. Depending on the environmental condition, different dynamic processes dominate the responses. For parked states, deviations between models up to 160% were found. For wind wave-misalignment over 30° in operational cases, differences up to 180% were found for low sea states and 119% for high sea sates. Both nonlinear foundation damping and stiffness formulation have considerable effect on the responses, with hysteretic effects becoming crucial when aerodynamic damping is negligible in the direction of the response. Attention is required when comparing the fatigue damage only at the mudline, as larger variations between the models may occur in the embedded part of the monopile, where the absolute maximum is found.nb_NO
dc.publisherIOP Publishingnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titleFatigue sensitivity to foundation modelling in different operational states for the DTU 10MW monopile-based offshore wind turbinenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.source.journalJournal of Physics: Conference Seriesnb_NO
dc.description.localcodeContent from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltdnb_NO
cristin.unitnameInstitutt for marin teknikk
cristin.unitnameInstitutt for bygg- og miljøteknikk

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal