Vis enkel innførsel

dc.contributor.authorHagen, Brede
dc.contributor.authorNikolaisen, Monika
dc.contributor.authorAndresen, Trond
dc.date.accessioned2019-11-07T09:05:49Z
dc.date.available2019-11-07T09:05:49Z
dc.date.created2019-10-28T08:45:08Z
dc.date.issued2019
dc.identifier.citationApplied Thermal Engineering. 2019, 165 .nb_NO
dc.identifier.issn1359-4311
dc.identifier.urihttp://hdl.handle.net/11250/2627105
dc.description.abstractThis study presents a novel approach for Rankine cycle (RC) analysis, introducing a generic counter current heat exchanger (HX) model to enable basic fluid thermal and flow behaviour in HXs to be considered in a cycle optimisation process. The generic HX model does not represent a certain HX-type or even a manufacturable design, but applies fluid properties and a minimum amount of generic geometry parameters to estimate local heat transfer coefficients and pressure gradients. The proposed methodology thus permits simultaneous optimization of process state points and the trade-off between overall heat transfer coefficient and pressure drop without relying on a specific HX-geometry concept. The proposed methodology is demonstrated for evaluation of single-stage recuperated RC's of different HX size and working fluids, and compared with more conventional thermodynamic analyses. The comparison showed that the novel analysis resulted in lower net power output than the thermodynamic analyses due to working fluid-depending pressure drop in heat exchangers, and a quantitative HX size estimate in terms of total HX area based on working-fluid depended heat transfer coefficients. We therefore suggest the novel analysis as a low effort and more informative alternative to pure thermodynamic approaches for initial RC analyses.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA novel methodology for Rankine cycle analysis with generic heat exchanger modelsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber11nb_NO
dc.source.volume165nb_NO
dc.source.journalApplied Thermal Engineeringnb_NO
dc.identifier.doi10.1016/j.applthermaleng.2019.114566
dc.identifier.cristin1740999
dc.relation.projectNorges forskningsråd: 255016nb_NO
dc.description.localcode© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal