Vis enkel innførsel

dc.contributor.authorJalili, Zohreh
dc.contributor.authorKrakhella, Kjersti Wergeland
dc.contributor.authorEinarsrud, Kristian Etienne
dc.contributor.authorBurheim, Odne Stokke
dc.date.accessioned2019-11-04T07:57:55Z
dc.date.available2019-11-04T07:57:55Z
dc.date.created2019-06-12T21:57:36Z
dc.date.issued2019
dc.identifier.citationJournal of Energy Storage. 2019, 24 1-22.nb_NO
dc.identifier.issn2352-152X
dc.identifier.urihttp://hdl.handle.net/11250/2626248
dc.description.abstractThree energy storage systems based on mixing and desalination of solutions with different salt concentrations are presented, namely, reverse electrodialysis, pressure retarded osmosis and capacitive Donnan potential, coupled to their corresponding desalination technologies: electrodialysis, reverse osmosis and membrane capacitive deionisation. Conceptual mathematical models are used to assess power densities and efficiency, and to address the influence on the performance of factors such as temperature and residence time. The maximum power densities for electrodialysis, osmotic and capacitive energy storage systems are calculated as 4.69, 4.83 and 0.503 W m−2, respectively, at 25 °C and residence time of 20 s, corresponding to an average fluid velocity of 5 mm/s. In order to achieve competitive economic energy (in the EU) with this power density, the membrane price needs to be lower than 2.9, 3.0 and 0.31$ m−2, for each of the technologies. Utilisation of waste heat to increase the temperature to 60 °C increases the power density to 8.54, 6.04 and 0.708 W m−2, which allows for 25% higher osmotic membrane price (3.7$ m−2), and over 80% and 40% higher price (5.2 and 0.43$ m−2) for the ionic exchange membrane used in the electrodialytic and capacitive energy storage system respectively, while still having economic energy production. Advantages and disadvantages of the proposed energy storage systems are discussed, along with the cost evaluation for each technology.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEnergy generation and storage by salinity gradient power: A model-based assessmentnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-22nb_NO
dc.source.volume24nb_NO
dc.source.journalJournal of Energy Storagenb_NO
dc.identifier.doi10.1016/j.est.2019.04.029
dc.identifier.cristin1704492
dc.description.localcode© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).nb_NO
cristin.unitcode194,66,35,0
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for materialteknologi
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal