Vis enkel innførsel

dc.contributor.authorBila, Alberto Luis
dc.contributor.authorStensen, Jan Åge
dc.contributor.authorTorsæter, Ole
dc.date.accessioned2019-09-30T08:00:33Z
dc.date.available2019-09-30T08:00:33Z
dc.date.created2019-07-16T13:06:11Z
dc.date.issued2019
dc.identifier.citationNanomaterials. 2019, 9 (822), 1-25.nb_NO
dc.identifier.issn2079-4991
dc.identifier.urihttp://hdl.handle.net/11250/2619285
dc.description.abstractRecently, polymer-coated nanoparticles were proposed for enhanced oil recovery (EOR) due to their improved properties such as solubility, stability, stabilization of emulsions and low particle retention on the rock surface. This work investigated the potential of various polymer-coated silica nanoparticles (PSiNPs) as additives to the injection seawater for oil recovery. Secondary and tertiary core flooding experiments were carried out with neutral-wet Berea sandstone at ambient conditions. Oil recovery parameters of nanoparticles such as interfacial tension (IFT) reduction, wettability alteration and log-jamming effect were investigated. Crude oil from the North Sea field was used. The concentrated solutions of PSiNPs were diluted to 0.1 wt % in synthetic seawater. Experimental results show that PSiNPs can improve water flood oil recovery efficiency. Secondary recoveries of nanofluid ranged from 60% to 72% of original oil in place (OOIP) compared to 56% OOIP achieved by reference water flood. In tertiary recovery mode, the incremental oil recovery varied from 2.6% to 5.2% OOIP. The IFT between oil and water was reduced in the presence of PSiNPs from 10.6 to 2.5–6.8 mN/m, which had minor effect on EOR. Permeability measurements indicated negligible particle retention within the core, consistent with the low differential pressure observed throughout nanofluid flooding. Amott–Harvey tests indicated wettability alteration from neutral- to water-wet condition. The overall findings suggest that PSiNPs have more potential as secondary EOR agents than tertiary agents, and the main recovery mechanism was found to be wettability alteration.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPInb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExperimental Investigation of Polymer-Coated Silica Nanoparticles for Enhanced Oil Recovery.nb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-25nb_NO
dc.source.volume9nb_NO
dc.source.journalNanomaterialsnb_NO
dc.source.issue822nb_NO
dc.identifier.doi10.3390/nano9060822
dc.identifier.cristin1711658
dc.relation.projectNorges forskningsråd: 262644nb_NO
dc.description.localcode© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).nb_NO
cristin.unitcode194,64,90,0
cristin.unitnameInstitutt for geovitenskap og petroleum
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal