Vis enkel innførsel

dc.contributor.authorRabani, Mehrdad
dc.contributor.authorMadessa, Habtamu Bayera
dc.contributor.authorNord, Natasa
dc.contributor.authorSchild, Peter
dc.date.accessioned2019-09-24T11:40:19Z
dc.date.available2019-09-24T11:40:19Z
dc.date.created2019-08-23T09:15:50Z
dc.date.issued2019
dc.identifier.citationE3S Web of Conferences. 2019, 111 .nb_NO
dc.identifier.issn2267-1242
dc.identifier.urihttp://hdl.handle.net/11250/2618489
dc.description.abstractEnergy efficiency in buildings is nowadays considered as an essential step to reduce CO2 emissions and energy utilization. At the same time, new technologies such as building space heating using active air heating has simplified the heating system without any need for backup heating system. This study investigated the thermal stratification of mixing ventilation system equipped with a radial active supply diffuser for space heating of an office room designed according to the Norwegian passive house standard by using Star-CCM+. Simulations were performed for different supply airflow rates with corresponding slot openings of the active diffuser at different outdoor conditions for winter season. The combined effect of the supply airflow rate and the outdoor air temperature were also described in the form of Archimedes number (Ar). The results showed that adopting active diffuser could avoid the temperature stratification for all the simulated cases by preserving the throw length of supply jet. In addition, the lowest temperature effectiveness of 38% occurred when a high supply temperature was used in the coldest day. Furthermore, with the supply temperature 24 °C, the airflow rate 49.4 l/s at the outdoor temperature -15 °C would result in a favorable average of PMV ⁓ 0.497.nb_NO
dc.language.isoengnb_NO
dc.publisherEDP Sciencesnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePerformance analysis of an active diffuser in mixing ventilation for cell office by using numerical approachnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber6nb_NO
dc.source.volume111nb_NO
dc.source.journalE3S Web of Conferencesnb_NO
dc.identifier.doi10.1051/e3sconf/201911104033
dc.identifier.cristin1718180
dc.description.localcode© The Authors, published by EDP Sciences, 2019 Licence Creative Commons This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal