Vis enkel innførsel

dc.contributor.authorAdamski, Michael
dc.contributor.authorPeressin, Nicolas
dc.contributor.authorHoldcroft, Steven
dc.contributor.authorPollet, Bruno
dc.date.accessioned2019-09-20T09:36:34Z
dc.date.available2019-09-20T09:36:34Z
dc.date.created2019-09-07T06:51:10Z
dc.date.issued2020
dc.identifier.issn1350-4177
dc.identifier.urihttp://hdl.handle.net/11250/2617994
dc.description.abstractThe effect of low frequency power ultrasound on Nafion® ionomer used for fabricating proton exchange membrane fuel cell (PEMFC) and water electrolyzer (PEMWE) catalyst inks was investigated. In this study, a series of Nafion® dispersions having three concentrations (10, 5, and 2.5% w/v) were studied under various irradiation durations (tus), at fixed ultrasonic frequency (f = 42 kHz) and ultrasonic power (P > 2 W), under either controlled or unregulated bulk solution temperature conditions using a laboratory ultrasonic cleaning bath. Viscosity (η), thermal degradation, and glass transition temperature (Tg) for all Nafion® dispersion samples was measured and compared to untreated Nafion® samples. In our conditions, it was found that power ultrasound lowered the viscosity of all tested Nafion® dispersion samples; whilst thermogravimetric and differential scanning calorimetry analyses showed that for all ultrasonically irradiated samples, a negligible overall polymer degradation and no obvious change in Tg was observed under controlled and unregulated bulk temperature conditions. It was found that it is possible that acoustic cavitation causes depolymerisation followed by a polymerisation initiation step during ultrasonication. By comparing the ultrasonically treated and high-shear mixed samples, it was also observed that acoustic and hydrodynamic cavitation played an important role in the reduction of dispersion viscosity.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleDoes power ultrasound affect Nafion® dispersions?nb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.journalUltrasonics sonochemistrynb_NO
dc.identifier.cristin1722494
dc.description.localcode(C) 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal