Vis enkel innførsel

dc.contributor.authorAwan, Muhammad Faheem
dc.contributor.authorFang, Xiao
dc.contributor.authorRamzan, Mehrab
dc.contributor.authorNeumann, Niels
dc.contributor.authorWang, Qiong
dc.contributor.authorPlettemeier, Dirk
dc.contributor.authorKansanen, Kimmo
dc.date.accessioned2019-09-06T08:56:22Z
dc.date.available2019-09-06T08:56:22Z
dc.date.created2019-09-03T10:11:49Z
dc.date.issued2019
dc.identifier.citationEntropy. 2019, 21 (9), .nb_NO
dc.identifier.issn1099-4300
dc.identifier.urihttp://hdl.handle.net/11250/2612883
dc.description.abstractThe next generation of implanted medical devices is expected to be wireless, bringing along new security threats. Thus, it is critical to secure the communication between legitimate nodes inside the body from a possible eavesdropper. This work assesses the feasibility of securing next generation multi-nodal leadless cardiac pacemakers using physical layer security methods. The secure communication rate without leakage of information to an eavesdropper, referred to as secrecy capacity, depends on the signal-to-noise ratios (SNRs) of the eavesdropper and legitimate channels and will be used as a performance metric. Numerical electromagnetic simulations are utilized to compute the wireless channel models for the respective links. These channel models can be approximated with a log-normal distribution which can be used to evaluate the probability of positive secrecy capacity and the outage probability of this secrecy capacity. The channels are modeled for three different frequency bands and a comparison between their secrecy capacities is provided with respect to the eavesdropper distance. It has been found that the positive secrecy capacity is achievable within the personal space of the human body for all the frequency bands, with the medical implant communication systems (MICS) band outperforming others.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPInb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEvaluating Secrecy Capacity for In-Body Wireless Channelsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber15nb_NO
dc.source.volume21nb_NO
dc.source.journalEntropynb_NO
dc.source.issue9nb_NO
dc.identifier.doihttps://doi.org/10.3390/e21090858
dc.identifier.cristin1720850
dc.description.localcodec 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).nb_NO
cristin.unitcode194,63,35,0
cristin.unitnameInstitutt for elektroniske systemer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal