• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On gradient-based optimization of jacket structures for offshore wind turbines

Oest, Jacob; Sandal, Kasper; Schafhirt, Sebastian; Stieng, Lars Einar; Muskulus, Michael
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Oest (4.468Mb)
URI
http://hdl.handle.net/11250/2609788
Date
2018
Metadata
Show full item record
Collections
  • Institutt for bygg- og miljøteknikk [5107]
  • Publikasjoner fra CRIStin - NTNU [41874]
Original version
Wind Energy. 2018, 21 (11), 953-967.   10.1002/we.2206
Abstract
During the bidding or very early design phases of jacket structures for offshore wind turbines, there may be very limited information available on meteorological conditions, soil conditions, turbine specifications, etc. However, it is still important to quickly produce near‐optimal designs with production costs similar to that of the final support structure. Numerical optimization methods can be used to this purpose. This paper investigates three gradient‐based optimization methods, where preliminary designs are produced by mass optimization. The mass is reduced by changing tube diameter and thickness of the structural members, and the optimization considers both frequency and fatigue constraints. The three methods are based on (1) damage equivalent loads, (2) quasi‐static analysis, and (3) dynamic analysis. The optimizations are conducted using in‐house software JADOP (jacket design optimization), and the optimized designs are evaluated using state‐of‐the‐art integrated time‐domain simulation software FEDEM Windpower. The findings show that each analysis can be applied with success. However, if excitations of structural frequencies contribute significantly to the overall damage, special care must be taken with quasi‐static and static modeling. It is observed that wave loading does not contribute considerably to the fatigue damage. Additionally, the aerodynamic loading does not change significantly with changes of tube geometry within the optimization ranges. The optimized designs are partly driven by reducing stress concentration factors, which can be achieved by reducing the chord diameter to thickness ratio. Thus, the optimized designs resemble each other to a certain extent.
Publisher
Wiley
Journal
Wind Energy

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit