• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Markov approach to estimate fatigue damage for monopile-based offshore wind turbines

Choy, Cristina Capdevila; Schafhirt, Sebastian; Muskulus, Michael
Chapter
Submitted version
View/Open
Choy (Locked)
URI
http://hdl.handle.net/11250/2608144
Date
2018
Metadata
Show full item record
Collections
  • Institutt for bygg- og miljøteknikk [4484]
  • Publikasjoner fra CRIStin - NTNU [35008]
Abstract
The Markov approach to estimate fatigue damage for a monopile-based offshore wind turbine exposed to aerodynamic and hydrodynamic loading is investigated in this study. The focus of this study is on obtaining the rainflow-counting intensity from a peak-trough counting using the Markov method proposed by Frendahl & Rychlik. The fatigue damage estimated from the rainflow-counting intensity is compared to fatigue damage estimated from the original time-series using the rainflow-counting algorithm. The comparison is performed for different load situations. The study shows that the Markov approach performs the best for load situations where wave loading is dominating the response, making it interesting for load calculations of large-diameter monopiles and monopiles in parked or idling conditions.
Publisher
International Society of Offshore and Polar Engineers

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit