• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Renormalisation group for multiple zeta values

Ebrahimi-Fard, Kurusch; Manchon, Dominique; Singer, Johannes; Zhao, Jianqang
Journal article, Peer reviewed
Published version
View/Open
Ebrahimi-Fard (Locked)
URI
http://hdl.handle.net/11250/2603779
Date
2018
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1396]
  • Publikasjoner fra CRIStin - NTNU [19857]
Original version
Communications in Number Theory and Physics. 2018, 12 (1), 75-96.   10.4310/CNTP.2018.v12.n1.a3
Abstract
Calculating multiple zeta values at arguments of any sign in a way that is compatible with both the quasi-shuffle product as well as meromorphic continuation, is commonly referred to as the renormalisation problem for multiple zeta values. We consider the set of all solutions to this problem and provide a framework for comparing its elements in terms of a free and transitive action of a particular subgroup of the group of characters of the quasi-shuffle Hopf algebra. In particular, this provides a transparent way of relating different solutions at non-positive values, which answers an open question in the recent literature.
Publisher
International Press
Journal
Communications in Number Theory and Physics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit