• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular dynamics study of di-CF4 based reverse micelles in supercritical CO2

Liu, Bing; Tang, Xinpeng; Fang, Wenjing; Li, Xiaoqi; Zhang, Jun; Zhang, Zhiliang; Shen, Yue; Yan, Youguo; Sun, Xiao-Li; He, Jianying
Journal article, Peer reviewed
Published version
View/Open
Liu (Locked)
URI
http://hdl.handle.net/11250/2596656
Date
2016
Metadata
Show full item record
Collections
  • Institutt for konstruksjonsteknikk [2413]
  • Publikasjoner fra CRIStin - NTNU [34889]
Original version
Physical Chemistry, Chemical Physics - PCCP. 2016, 42 (18), 29156-29163.   10.1039/c6cp04253h
Abstract
The reverse micelles (RMs) in supercritical CO2 (scCO2) are promising alternatives for organic solvents, especially for both polar and non-polar components are involved. Fluorinated surfactants, particularly the double-chain fluorocarbon surfactants, are appropriate to form well-structured RMs in scCO2. The mechanisms inherent to the self-assembly of the surfactants in scCO2 are still subject to discussion. In this study, molecular dynamics simulations were performed to investigate the self-aggregation behavior of di-CF4 based RM in scCO2 and a stable and spherical RM is formed. The dynamics process and the self-assembly structure in the RM reveal a three-step mechanism to form the RM, that is, small RMs, rod-like RMs and the fusion of rod-like RMs. The Hydrogen-bonds between headgroups and water molecules, and the salt bridges linking Na+, headgroups and water molecules enhance the interfacial packing efficiency of the surfactant. The result shows the di-CF4 molecule has the high surfactant coverage at the RM interface, implying the high CO2-philicity. This mainly results from the bend of the short chain (C-COO-CH2-(CF2)3-CF3) due to the flexible carboxyl group. The microscopic insight provides in this study is helpful to understand the surfactant self-assembly phenomena and design new CO2-philic surfactants.
Publisher
Royal Society of Chemistry
Journal
Physical Chemistry, Chemical Physics - PCCP

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit