• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural Instability and Mechanical Properties of MoS2 Toroidal Nanostructures

Wu, Jianyang; Nie, Gaosheng; Xu, Jun; He, Jianying; Xu, Qingchi; Zhang, Zhiliang
Journal article, Peer reviewed
Published version
View/Open
Wu (Locked)
URI
http://hdl.handle.net/11250/2596650
Date
2015
Metadata
Show full item record
Collections
  • Institutt for konstruksjonsteknikk [2627]
  • Publikasjoner fra CRIStin - NTNU [41869]
Original version
Physical Chemistry, Chemical Physics - PCCP. 2015, 17 32425-32435.   10.1039/C5CP05435D
Abstract
Molybdenum disulfide (MoS2) nanostructures have received considerable research attention due to their outstanding physical and chemical properties. Recently, a form of MoS2 ring structure exhibiting unique transport properties has been experimentally identified. Herein, we present the first report describing direct molecular dynamics (MD) simulations of structural instability and mechanical properties of hypothetical MoS2 nanotube (NT) toroidal nanostructures. Nanorings with small diameter MoS2 NTs retain their circular shape because of the higher bending stability of NTs, while for those with large diameter MoS2 NTs buckling/kinking and displacive phase transformations appear to effectively reduce bending stress as a mechanism for stabilizing the nanorings. However, the nanorings which have to polygonize maintain a circular shape as thick multi-walled inner nanorings are presented. Furthermore, mechanical responses of various nanoweaves (nanochains, nanomailles, and nanochainmailles) by linking nanorings together are also studied. The results show that Young's modulus, stretchability and tensile strength of such nanoweaves depend not only on the helicity of MoS2 NTs but also on the woven pattern. For example, nanostructures with 4-in-1 weaves of nanorings exhibit much higher tensile strength and stiffness but lower extensibility than those with 2-in-1 weaves. The finding suggests that MoS2 NT nanorings and their woven hierarchical structures may be used in the development of new flexible, light-weight electromechanical and optoelectronic nanodevices.
Publisher
Royal Society of Chemistry
Journal
Physical Chemistry, Chemical Physics - PCCP

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit