• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fracture and negative Poisson’s ratio of novel spanned-fullerenes nanotube networks under tension

Wu, Jianyang; He, Jianying; Zhang, Zhiliang
Journal article, Peer reviewed
Published version
View/Open
Wu (Locked)
URI
http://hdl.handle.net/11250/2596645
Date
2013
Metadata
Show full item record
Collections
  • Institutt for konstruksjonsteknikk [2628]
  • Publikasjoner fra CRIStin - NTNU [41874]
Original version
Computational materials science. 2013, 80 15-26.   10.1016/j.commatsci.2013.04.033
Abstract
Carbon-based nanomaterials have attracted significant attention due to their unique physical properties. In this study, various multi-dimensional graphitic architectures are constructed by spanning fullerenes with carbon nanotube (CNT) super-bonds. The mechanical properties of these novel architectures are systematically investigated by full atomistic simulations. The stress and strain of 1D nano-bamboo structures upon the onset of instability are almost constant, about 1/5 and 1/2, respectively, of those of a perfect CNT. The deformation and fracture behavior of 2D and 3D periodic graphitic nanostructures are largely dictated by the inter-fullerene distance and loading orientation. Surprising negative Poisson’s ratio observed in 2D and 3D networks is revealed to originate as a result of curvature-flattening or rigid mechanical model. The magnitude of Poisson’s ratio is strongly dependent on the level of strain, CNT length as well as temperature. The insight on the deformation mechanism of these periodic graphitic nanostructures will facilitate the integration of low-dimensional materials towards high-dimensional organized structures to realize targeted multi-functional properties.
Publisher
Elsevier
Journal
Computational materials science

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit