• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Displacement mechanism of oil in shale inorganic nanopores by supercritical carbon dioxide from molecular dynamics simulations

Liu, Bing; Wang, Chao; Zhang, Jun; Xiao, Senbo; Zhang, Zhiliang; Shen, Yue; sun, baojiang; He, Jianying
Journal article, Peer reviewed
Published version
Åpne
Liu (Låst)
Permanent lenke
http://hdl.handle.net/11250/2596628
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Institutt for konstruksjonsteknikk [1599]
  • Publikasjoner fra CRIStin - NTNU [20946]
Originalversjon
Energy & Fuels. 2017, 31 (1), 738-746.   10.1021/acs.energyfuels.6b02377
Sammendrag
Supercritical CO2 (scCO2), as an effective displacing agent and clean fracturing fluid, exhibits a great potential in enhanced oil recovery (EOR) from unconventional reservoirs. However, the microscopic translocation behavior of oil in shale shale inorganic nanopores, has not been well understood yet in the scCO2 displacement process. Herein, non-equilibrium molecular dynamics (NEMD) simulations were performed to study adsorption and translocation of scCO2/dodecane in shale inorganic nanopores at different scCO2 injection rates. The injected scCO2 preferentially adsorb in proximity of the surface and form layering structures due to hydrogen bonds interactions between CO2 and -OH groups. A part of scCO2 molecules in the adsorption layer retain the mobility, due to the cooperation of slippage, Knudsen diffusion, and imbibition of scCO2. The adsorbed dodecane are separated partly from the surface by scCO2, as a result the competitive adsorption between scCO2 and dodecane, and thus enhancing the mobility of oil and improving oil production. In the scCO2 displacement front, interfacial tension (IFT) reduction and dodecane swelling enhance the mobilization of dodecane molecules, which plays the crucial role in the CO2 EOR process. The downstream dodecane, adjacent to the displacement front, are found to aggregate and pack tightly. The analysis of contact angle, meniscus and interfacial width shows that the small scCO2 injection rate with a large injection volume is favorable for CO2 EOR. The morphology of meniscus changes in the order convex-concave-CO2 entrainment with the increase of the injection rate. The microscopic insight provided in this study is helpful to understand and effectively design CO2 exploitation of shale resources.
Utgiver
American Chemical Society
Tidsskrift
Energy & Fuels

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit