• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Big data and connectivity in long-linked supply chains

Engelseth, Per; Wang, Hao
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
Engelseth (198.7Kb)
Permanent lenke
http://hdl.handle.net/11250/2596416
Utgivelsesdato
2018
Metadata
Vis full innførsel
Samlinger
  • Institutt for IKT og realfag [360]
  • Publikasjoner fra CRIStin - NTNU [26736]
Originalversjon
The journal of business & industrial marketing. 2018, 33 (8), 1201-1208.   10.1108/JBIM-07-2017-0168
Sammendrag
Purpose This study aims to consider the developing of strategic use of big data in association with long-linked physical goods supply focusing on risk management. Design/methodology/approach Analysis is grounded on a case study of organizing the import of machine parts from Shanghai, China, to Norway. An analytical framework is developed through a literature review on long linked supply chains, big data and risk management. Findings Analysis reveals that big data use in this scenario encompasses mainly around handling risks associated with transformations in the supply chain, a data-driven approach. Complexity is founded in transformation – the flows of goods and information. Supply chain dynamics represent an important source for data acquisition for big data analytics. Research limitations/implications The qualitative nature of the study limits the aim of generalization. An alternative view of big data as process is discussed and proposed, adapted to supply chain management and industrial marketing functionality. Originality/value This is the first part in an ongoing research project aimed at developing a research approach to study information technology use in the inherently complex setting and scope of a long linked supply network. This scope of investigation enhances big data associated with operations dynamics providing foundation for future research on how to use big data to mitigate risk in long linked supply chains.
Utgiver
Emerald
Tidsskrift
The journal of business & industrial marketing

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit