Vis enkel innførsel

dc.contributor.authorAbdelsalam, H.
dc.contributor.authorSaroka, Vasil
dc.contributor.authorYounis, W.O.
dc.date.accessioned2019-05-03T06:47:40Z
dc.date.available2019-05-03T06:47:40Z
dc.date.created2019-01-22T17:52:06Z
dc.date.issued2019
dc.identifier.citationPhysica. E, Low-Dimensional systems and nanostructures. 2019, 107 105-109.nb_NO
dc.identifier.issn1386-9477
dc.identifier.urihttp://hdl.handle.net/11250/2596384
dc.description.abstractDensity functional theory calculations are performed on phosphorene quantum dots having different shapes and edge terminations to investigate their structure stability, electronic properties, and gas sensing ability. All the selected phosphorene dots, namely hexagonal and triangular flakes with armchair and zigzag terminations, have positive binding energies which insure their stability even though the bond lengths are much longer than those in the infinite phosphorene layer. It is found that all the selected hydrogen passivated quantum dots have a wide energy gap. In contrast, the partial passivation with sulfur decreases the gap. Moreover, it transforms the system from antiferromagnetic to ferromagnetic state. The energy gap of hexagonal zigzag cluster can be additionally tuned by electric field: narrowed by about 1.7 eV for hydrogenated or broadened by 0.25 eV for partially sulfurated edges. It is shown that phosphorene quantum dots successfully adsorb H2S, CH4, CO, NH3 gas molecules either on their edge or surface. The highest adsorption energy is obtained for NH3 molecule, when it is placed over the surface. This adsorption is alleviated by in-plane electric field and hindered by perpendicular fieldnb_NO
dc.description.abstractPhosphorene quantum dot electronic properties and gas sensingnb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.relation.urihttps://doi.org/10.1016/j.physe.2018.11.012
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectTetthetsfunksjonal teorinb_NO
dc.subjectDensity functional theorynb_NO
dc.titlePhosphorene quantum dot electronic properties and gas sensingnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.subject.nsiVDP::Teoretisk kjemi, kvantekjemi: 444nb_NO
dc.subject.nsiVDP::Theoretical chemistry, quantum chemistry: 444nb_NO
dc.source.pagenumber105-109nb_NO
dc.source.volume107nb_NO
dc.source.journalPhysica. E, Low-Dimensional systems and nanostructuresnb_NO
dc.identifier.doi10.1016/j.physe.2018.11.012
dc.identifier.cristin1663268
dc.relation.projectEC/H2020/644076nb_NO
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 12 November 2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal