Vis enkel innførsel

dc.contributor.authorAbdelsalam, H.
dc.contributor.authorSaroka, Vasil
dc.contributor.authorYounis, W.O.
dc.date.accessioned2019-04-11T07:18:11Z
dc.date.available2019-04-11T07:18:11Z
dc.date.created2019-04-09T17:20:27Z
dc.date.issued2019
dc.identifier.citationSuperlattices and Microstructures. 2019, 129 54-61.nb_NO
dc.identifier.issn0749-6036
dc.identifier.urihttp://hdl.handle.net/11250/2594123
dc.description.abstractThe effect of chemical functionalization on the electronic properties of graphene nanoribbon superlattices with zigzag and armchair terminations is investigated using the density functional theory. The calculated positive binding energies imply that all the considered structures are stable before and after chemical modifications. The superlattices with armchair edges are characterized by a wide energy gap while those with zigzag edges have a narrow energy gap. The energy gap in superlattices with armchair edges nearly independent of their length while it strongly decreases and almost closes in superlattices with zigzag edges. The energy gap is comparably sensitive to the width variations in both types of the superlattices. It was found that the electric dipole moment increases with increasing the width in the case of armchair while it oscillates in zigzag superlattices. The electric dipole moment can be enhanced by chemical functionalization with COOH and NH2 groups. The effect of this functionalization is moderate for the energy gap, but the adsorption of tetracyanoquinodimethane transforms the system from insulator (Eg = 2.66 eV) to a narrow band gap semiconductor (Eg = 0.25 eV). The adsorption energy of tetracyanoquinodimethane and tetrathiafulvalene molecules can be enhanced by chemical functionalization which makes graphene superlattices useful for sensor applications and wastewater treatment.nb_NO
dc.description.abstractEdge functionalization of finite graphene nanoribbon superlatticesnb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.relation.urihttps://doi.org/10.1016/j.spmi.2019.03.008
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleEdge functionalization of finite graphene nanoribbon superlatticesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.subject.nsiVDP::Teoretisk kjemi, kvantekjemi: 444nb_NO
dc.subject.nsiVDP::Theoretical chemistry, quantum chemistry: 444nb_NO
dc.source.pagenumber54-61nb_NO
dc.source.volume129nb_NO
dc.source.journalSuperlattices and Microstructuresnb_NO
dc.identifier.doi10.1016/j.spmi.2019.03.008
dc.identifier.cristin1691210
dc.relation.projectNorges forskningsråd: 262633nb_NO
dc.relation.projectNorges forskningsråd: 274853nb_NO
dc.description.localcode© 2019. This is the authors’ accepted and refereed manuscript to the article. Locked until 9 March 2021 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal