Vis enkel innførsel

dc.contributor.authorNeupane, Bibek
dc.contributor.authorPanthi, Krishna Kanta
dc.date.accessioned2019-04-05T13:22:56Z
dc.date.available2019-04-05T13:22:56Z
dc.date.created2019-01-16T16:41:09Z
dc.date.issued2019
dc.identifier.isbn978-981-11-9003-2
dc.identifier.urihttp://hdl.handle.net/11250/2593565
dc.description.abstractThe main design principle of unlined pressure tunnels/shafts in a hydropower scheme is to provide sufficient confinement (minor principal stress) to withstand the internal hydrostatic water pressure. Rock support is only provided in areas where very weak rockmass is encountered. The principle uses maximum hydrostatic water head as a design parameter and thus implies that occasional pressure transients will not have significant impact on the stability of a pressure tunnel. Minor rock falls and resulting headloss are accepted as a compromise against higher cost of supporting the whole tunnel. However, because of changing operational regime of power plants in recent years, start and stop sequences have become more frequent in Norway. This has resulted in more frequent water hammer and mass oscillations in pressure tunnels compared to the time when these tunnels were designed/constructed. Consequently, collapses have occurred in some unlined pressure tunnels/shafts, which have been in long-term operation. This article aims to assess the influence of pressure fluctuation in the long-term stability of unlined inclined pressure shaft of Svandalsflona Hydropower Project located in southern Norway. The main issue is to review and analyze the collapse that was identified in 2008 at the inclined shaft of the headrace system of the project. The article reviews the engineering geological condition of the collapse area, evaluates mechanical properties of the rockmass at the failure location, tunnel hydraulics over the period of its operation and hydraulic impact on the rockmass/installed rock support. As the outcome, the mechanics of failure resulting due to pressure variations and conditions that may have led to the instability in this inclined shaft subjected to frequent start and stop sequences during operation are discussed. The manuscript is a part of large research initiative in Norway in the field of renewable energy called HydroCen (Norwegian Research Centre for Hydropower Technology).nb_NO
dc.language.isoengnb_NO
dc.publisherInternational Society for Rock Mechanicsnb_NO
dc.relation.ispartofARMS10 10th Asian Rock Mechanics Symposium The ISRM International Symposium for 2018, 29 Oct - 3 Nov, Singapore - proceedings
dc.titleEffect of pressure fluctuations in long-term stability of unlined pressure shaft at Svandalsflona Hydropower project, Norwaynb_NO
dc.typeChapternb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-11nb_NO
dc.identifier.cristin1658650
dc.relation.projectNorges forskningsråd: 257588nb_NO
dc.description.localcodeThis chapter will not be available due to copyright restrictions (c) 2018 by International Society for Rock Mechanicsnb_NO
cristin.unitcode194,64,90,0
cristin.unitnameInstitutt for geovitenskap og petroleum
cristin.ispublishedtrue
cristin.fulltextoriginal


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel