Vis enkel innførsel

dc.contributor.authorRen, Zhengru
dc.contributor.authorSkjetne, Roger
dc.contributor.authorJiang, Zhiyu
dc.contributor.authorGao, Zhen
dc.contributor.authorVerma, Amrit Shankar
dc.date.accessioned2019-04-05T09:18:02Z
dc.date.available2019-04-05T09:18:02Z
dc.date.created2019-01-05T13:15:27Z
dc.date.issued2019
dc.identifier.citationMechanical systems and signal processing. 2019, 123 222-243.nb_NO
dc.identifier.issn0888-3270
dc.identifier.urihttp://hdl.handle.net/11250/2593454
dc.description.abstractOffshore wind turbines (OWTs) have become increasingly popular for their ability to harvest clean offshore wind energy. Bottom-fixed foundations are the most used foundation type. Because of its large diameter, the foundation is sensitive to wave loads. For typical manually assisted blade-mating operations, the decision to perform the mating operation is based on the relative distance and velocity between the blade root center and the hub, and in accordance with the weather window. Hence, monitoring the hub real-time position and velocity is necessary, whether the blade installation is conducted manually or automatically. In this study, we design a hub motion estimation algorithm for the OWT with a bottom-fixed foundation using sensor fusion of a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). Two schemes are proposed based on a moving horizon estimator, a multirate Kalman filter, an online smoother, and a predictor. The moving horizon estimator mitigates the slow GNSS sampling rate relative to the hub dynamics. The multirate Kalman filter estimates the position, velocity, and accelerometer bias with a constant GNSS measurement delay. The online smoothing algorithm filters the delayed estimated trajectory to remove sudden step changes. The predictor compensates the delayed estimate, resulting in real-time monitoring. HAWC2 and MATLAB are used to verify the performance of the estimation algorithms, showing that a sufficiently accurate real-time position and velocity estimate with a high sampling rate is achieved. A sensitivity study compares the accuracy of different algorithms applied in various conditions. By combining both proposed algorithms, a sufficiently accurate estimation can be achieved for a wider scope of practical applications.nb_NO
dc.description.abstractIntegrated GNSS/IMU Hub Motion Estimator for Offshore Wind Turbine Blade Installationnb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.titleIntegrated GNSS/IMU Hub Motion Estimator for Offshore Wind Turbine Blade Installationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber222-243nb_NO
dc.source.volume123nb_NO
dc.source.journalMechanical systems and signal processingnb_NO
dc.identifier.doi10.1016/j.ymssp.2019.01.008
dc.identifier.cristin1650965
dc.relation.projectNorges forskningsråd: 237929nb_NO
dc.relation.projectNorges forskningsråd: 223254nb_NO
dc.description.localcodePublisher embargo until May 15, 2021 (c) This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel