Show simple item record

dc.contributor.authorShoukat, Usman
dc.contributor.authorPinto, Diego Di Domenico
dc.contributor.authorKnuutila, Hanna K
dc.date.accessioned2019-04-01T08:06:04Z
dc.date.available2019-04-01T08:06:04Z
dc.date.created2019-03-08T07:50:05Z
dc.date.issued2019
dc.identifier.issn2227-9717
dc.identifier.urihttp://hdl.handle.net/11250/2592611
dc.description.abstractVarious novel amine solutions both in aqueous and non-aqueous [monoethylene glycol (MEG)/triethylene glycol(TEG)] forms have been studied for hydrogen sulfide (H2S) absorption. The study was conducted in a custom build experimental setup at temperatures relevant to subsea operation conditions and atmospheric pressure. Liquid phase absorbed H2S, and amine concentrations were measured analytically to calculate H2S loading (mole of H2S/mole of amine). Maximum achieved H2S loadings as the function of pKa, gas partial pressure, temperature and amine concentration are presented. Effects of solvent type on absorbed H2S have also been discussed. Several new solvents showed higher H2S loading as compared to aqueous N-Methyldiethanolamine (MDEA) solution which is the current industrial benchmark compound for selective H2S removal in natural gas sweetening procesnb_NO
dc.language.isoengnb_NO
dc.publisherMDPInb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleStudy of various aqueous and non-aqueous amine blends for hydrogen sulfide removal from natural gasnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume7nb_NO
dc.source.journalProcessesnb_NO
dc.source.issue160nb_NO
dc.identifier.doihttps://doi.org/10.3390/pr7030160
dc.identifier.cristin1683118
dc.description.localcode© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)nb_NO
cristin.unitcode194,66,30,0
cristin.unitnameInstitutt for kjemisk prosessteknologi
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal