• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-directional Irregular Wave Modelling with CFD

Wang, Weizhi; Bihs, Hans; Kamath, Arun; Arntsen, Øivind Asgeir
Chapter
Accepted version
Thumbnail
View/Open
Wang (2.683Mb)
URI
http://hdl.handle.net/11250/2588811
Date
2019
Metadata
Show full item record
Collections
  • Institutt for bygg- og miljøteknikk [2850]
  • Publikasjoner fra CRIStin - NTNU [20888]
Original version
10.1007/978-981-13-3119-0_31
Abstract
The design of coastal structures requires accurate simulations of the wave conditions. Computational fluid dynamics (CFD) captures most complexities of the wave physics with few assumptions and therefore is considered to be an ideal alternative for the offshore wave simulation. However, the conventional uni-directional regular wave CFD simulation does not represent the reality and tends to overestimate the wave conditions. The irregular bottom topography and varying water depth in the coastal area make the simulation more complicated. To give a more realistic simulation in a coastal area, a directional irregular wave model is to be implemented in a CFD code. This paper presents a multi-directional irregular wave implementation in the open-source CFD model REEF3D. The non-directional frequency spectra Joint North Sea Wave Observation Project (JONSWAP) together with a cos-squared-type directional spreading function is used for the simulation. REEF3D solves the incompressible Navier–Stokes equations with the finite difference method on a staggered Cartesian grid and uses the level-set method to capture the free surface under the two-phase flow approximation. The relaxation method is used for the wave generation and numerical beaches. The irregular waves are generated by the superimposition of a finite number of regular waves. The resulting significant wave heights are compared with another numerical model SWASH. The comparisons show good performance of CFD simulations in predicting irregular wave behaviours. The differences are also discussed for future references.
Publisher
Springer Verlag

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit