• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ordered invariant ideals of Fourier-Stieltjes algebras

Landstad, Magnus Brostrup; Kaliszewski, Steve; Quigg, John
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
badlemmapub.pdf (351.1Kb)
URI
http://hdl.handle.net/11250/2588556
Date
2018
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1397]
  • Publikasjoner fra CRIStin - NTNU [19961]
Original version
New York journal of mathematics. 2018, 24 1039-1055.  
Abstract
For a locally compact group G, every G-invariant subspace E of the Fourier-Stieltjes algebra B(G) gives rise to the following two ideals of the group C ∗ -algebra C ∗ (G): the intersection of the kernels of the representations with many coefficient functions in E, and the preannihilator of E. We investigate the question of whether these two ideals coincide. This leads us to define and study two properties of E — ordered and weakly ordered — that measure how many positive definite functions E contains.
Publisher
The New York Journal of Mathematics
Journal
New York journal of mathematics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit