Vis enkel innførsel

dc.contributor.authorUllah, Mohib
dc.contributor.authorUllah, Habib
dc.contributor.authorAlseadonn, Ibrahim M
dc.date.accessioned2019-03-04T12:15:52Z
dc.date.available2019-03-04T12:15:52Z
dc.date.created2018-01-16T21:13:09Z
dc.date.issued2017
dc.identifier.issn2229-3922
dc.identifier.urihttp://hdl.handle.net/11250/2588470
dc.description.abstractHuman action recognition is still a challenging problem and researchers are focusing to investigate this problem using different techniques. We propose a robust approach for human action recognition. This is achieved by extracting stable spatio-temporal features in terms of pairwise local binary pattern (P-LBP) and scale invariant feature transform (SIFT). These features are used to train an MLP neural network during the training stage, and the action classes are inferred from the test videos during the testing stage. The proposed features well match the motion of individuals and their consistency, and accuracy is higher using a challenging dataset. The experimental evaluation is conducted on a benchmark dataset commonly used for human action recognition. In addition, we show that our approach outperforms individual features i.e. considering only spatial and only temporal feature.nb_NO
dc.language.isoengnb_NO
dc.publisherAIRCC Publishing Corporationb_NO
dc.titleHuman action recognition in videos using stable featuresnb_NO
dc.typeJournal articlenb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.volume8nb_NO
dc.source.journalSignal & Image Processing :An International Journal (SIPIJ)nb_NO
dc.source.issue6nb_NO
dc.identifier.cristin1544734
dc.description.localcode© 2017. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: http://aircconline.com/sipij/V8N6/8617sipij01.pdfnb_NO
cristin.unitcode194,63,10,0
cristin.unitnameInstitutt for datateknologi og informatikk
cristin.ispublishedtrue
cristin.fulltextpostprint


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel