Vis enkel innførsel

dc.contributor.authorDawass, Noura
dc.contributor.authorKruger, Pieter
dc.contributor.authorSchnell, Sondre Kvalvåg
dc.contributor.authorBedeaux, Dick
dc.contributor.authorKjelstrup, Signe
dc.contributor.authorSimon, Jean Marc
dc.contributor.authorVlugt, Thijs
dc.date.accessioned2019-03-01T12:41:07Z
dc.date.available2019-03-01T12:41:07Z
dc.date.created2019-01-21T17:08:19Z
dc.date.issued2017
dc.identifier.citationMolecular Simulation. 2018, 44 (7), 599-612.nb_NO
dc.identifier.issn0892-7022
dc.identifier.urihttp://hdl.handle.net/11250/2588274
dc.description.abstractThe modelling of thermodynamic properties of liquids from local density fluctuations is relevant to many chemical and biological processes. The Kirkwood–Buff (KB) theory connects the microscopic structure of isotropic liquids with macroscopic properties such as partial derivatives of activity coefficients, partial molar volumes and compressibilities. Originally, KB integrals were formulated for open and infinite systems which are difficult to access with standard Molecular Dynamics (MD) simulations. Recently, KB integrals for finite and open systems were formulated (J Phys Chem Lett. 2013;4:235). From the scaling of KB integrals for finite subvolumes, embedded in larger reservoirs, with the inverse of the size of these subvolumes, estimates for KB integrals in the thermodynamic limit are obtained. Two system size effects are observed in MD simulations: (1) effects due to the size of the simulation box and the size of the finite subvolume embedded in the simulation box, and (2) effects due to computing radial distribution functions (RDF) from a closed and finite system. In this study, we investigate the two effects in detail by computing KB integrals using the following methods: (1) Monte Carlo simulations of finite subvolumes of a liquid with an analytic RDF and (2) MD simulations of a WCA mixture for various simulation box sizes, but at the same thermodynamic state. We investigate the effect of the size of the simulation box and quantify the differences compared to KB integrals computed in the thermodynamic limit. We demonstrate that calculations of KB integrals should not be extended beyond half the size of the simulation box. For finite-size effects related to the RDF, we find that the Van der Vegt correction (J Chem Theory Comput. 2013;9:1347) yields the most accurate results.nb_NO
dc.language.isoengnb_NO
dc.publisherTaylor & Francisnb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleFinite-size effects of Kirkwood–Buff integrals from molecular simulationsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber599-612nb_NO
dc.source.volume44nb_NO
dc.source.journalMolecular Simulationnb_NO
dc.source.issue7nb_NO
dc.identifier.doi10.1080/08927022.2017.1416114
dc.identifier.cristin1662455
dc.description.localcode© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.nb_NO
cristin.unitcode194,66,35,0
cristin.unitcode194,66,25,0
cristin.unitnameInstitutt for materialteknologi
cristin.unitnameInstitutt for kjemi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal