Vis enkel innførsel

dc.contributor.authorQu, Xiaoqi
dc.contributor.authorTang, Yougang
dc.contributor.authorGao, Zhen
dc.contributor.authorLi, Yan
dc.contributor.authorLiu, Liqin
dc.date.accessioned2019-03-01T06:39:46Z
dc.date.available2019-03-01T06:39:46Z
dc.date.created2018-11-05T11:23:41Z
dc.date.issued2018
dc.identifier.isbn978-0-7918-5131-9
dc.identifier.urihttp://hdl.handle.net/11250/2588143
dc.description.abstractIn this paper, an analytical model is proposed to describe the nonlinear vibration of blades on floating offshore wind turbine (FOWT). The bending-torsion coupling equations are derived based on Hamilton’s principle. Comparing with the classical Newtonian method, this approach is more mathematically rigorous and systematic. The flapwise and edgewise deformation, the torsion as well as axial extension of the blades are all included in the model. A set of partial differential equations governing the coupled nonlinear vibration is established, and the results are compared with the multi-body model. Some details about the solution of equations are discussed. The eigen values of a rotating blade is also calculated. The structural model proposed in this paper can be widely used in the future study. For example, it can be coupled with an aerodynamic model to study the aeroelastic properties of the wind turbine blades. The effect of platform motion on blade dynamic response can also be obtained based on this analytical model.nb_NO
dc.language.isoengnb_NO
dc.publisherASMEnb_NO
dc.relation.ispartofASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering - Volume 10: Ocean Renewable Energy
dc.titleAn Analytical Model of Floating Offshore Wind Turbine Blades Considering Bending-Torsion Coupling Effectnb_NO
dc.typeChapternb_NO
dc.description.versionpublishedVersionnb_NO
dc.identifier.doi10.1115/OMAE2018-78571
dc.identifier.cristin1627011
dc.description.localcodeCopyright © 2018 by ASMEnb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel